Credit Hours: 3-0 Prerequisite: None

Course Objectives: PhD/M.Phil and graduate students of functional analysis, applied mathematics, physics and engineering will find this an invaluable introduction to the subject. Main aim is to introduce students to the solutions of problems involving evolution equations via the theory of semigroup of operators. This course will enable the students to proceed to advanced textbooks and to many research papers devoted to the use of semigroups in the study of evolution systems.

Core Contents: Spectral Theory, Cauchy's Functional Equation, Semigroups on Banach and Hilbert spaces, Strongly continuous semigroups, Well-posedness for evolution equations, Semilinear problems.

Course Contents: Spaces and operators, spectral theory, fixed point theorem, uniformly continuous operator semigroups, semigroups on Banach spaces, semigroups on Hilbert spaces, strongly continuous semigroups, generators of semigroups, Hille-Yosida theorems, dissipative and m- dissipative operators, construction of semigroups, perturbation of generators, abstract Cauchy problems, inhomogeneous Cauchy problems, semilinear ACP, mild solutions, strong solutions.

Learning Outcomes: Students are expected to understand Spectral Theory, Cauchy's Functional Equation, Semigroups on Banach and Hilbert spaces, Strongly continuous semigroups, and applications of semigroup operator theory in differential equations and functional equations.

Text Books:

- Bellani-Morante and A. C. McBride, Applied Nonlinear Semigroups, John Wiley & Sons (Referred as BM)
- K-J Engel and R. Nagel, One Parameter Semigroups for Linear Evolution Equations Springer(Referred as EN)

1

ASSESSMENT SYSTEM

Nature of assessment	Frequency	Weightage (%age)
Quizzes	Minimum 3	10-15
Assignments	-	5-10
Midterm	1	25-35
End Semester	1	40-50
Examination		
Project(s)	-	10-20

Week	Weekly Breakdown			
Week	Section	Topics		
1	BM	Spaces and Operators, spectral Theory, Fixed Point		
	1.7-1.11	Theorem		
	EN	Cauchy's Functional Equation, Finite Dimensional Systems		
2	Chapter 1			
	1.1-1.4, 2.1-2.11			
3	Chapter 1	Uniformly continuous operator semigroups,		
	Section 3	semigroups onBanach spaces, Semigroups on		
		Hilbert spaces		
4	Chapter 1	Multiplication Semigroups, Translation semigroups		
	4.1 – 4.8			
5	Chapter 1	Strongly continuous semigroups and its basic properties		
	Section 5			
6	Chapter 2	Construction and examples of strongly continuous		
	1.1-1.7	semigroups		
7	1.8-1.14	Generator of Semigroups and their resolvents		
	Chapter 2	Standard construction of similar semigroups, rescaled		
8	2.1-2.11	semigroups, subspace semigroups, quotient		
		semigroups, adjoint semigroups, Product semigroups		
9	Mid Semester Ex	emester Exam		
10	3.1-3.11	Hille-Yosida Generation Theorems		
11	3.13-3.23	Dissipative Operators and Contractive Semigroups		
13	4.1-4.15	Special classes of semigroups		
	Chapter 2	Well-posedness for evolution equations, abstract		
14	6.1-6.11	Cauchy problems, Inhomogeneous abstract Cauchy		

	BM 2.5	problem and its strong solutions	
	Chapter 3		
15	11.15	Perturbation of Generators, the Trotter-Kato theorems	
	BM 2.4		
16	BM	Semilinear problems	
	3.1-		
	3.2		
17	BM	strong solutions, mild solutions	
	3.3-		
	3.4		
17	Review		
18	End Semeste	End Semester Exam	